
第 3章 Logics for verifying students’ learning processes: A survey 

23 

 

 第 3 章 Logics for verifying students’  

  learning processes: A survey 
 

Norihiro Kamide 

1 
 

Abstract 

In this report, a survey of two papers on logics for verifying students’ learning 

processes in learning support systems is given. These papers were written by the 

author.  

 

1. Introduction 
In this report, a survey of the papers [Kamide 2013a] and [Kamide 2013b], 

which were written by the author, is given. A motivation of these papers was to 

formalize students' learning processes within an appropriate logic. Formalizing 

students' learning process in an appropriate logic is required for implementing 

verification algorithms in some learning support systems such as intelligent tutoring 

systems [Freedman 2000] [Nwana 1990] and e-learning systems.  

A model of students in such a system should be inconsistency-tolerant since 

student's understanding is uncertain and vague in general. Moreover, detailed 

information on students should be well-structured with hierarchical information. In 

order to represent such a student model, we need a paraconsistent negation connective, 

which can appropriately represent inconsistency-tolerant reasoning, and some 

sequence modal operators, which can suitably represent hierarchical information.  

The papers [Kamide 2013a] and [Kamide 2013b] proposed such an appropriate 

logic. The paper [Kamide 2013a] proposed an extension of the standard linear-time 

temporal logic (LTL) [Pnueli 1977], and the paper [Kamide 2013b] proposed an 

extension of the standard computation-tree logic (CTL) [Emerson and Halpern 

1986][Emerson and Sistla 1984].  

 

2. The proposed logic in [Kamide 2013a] 
In the paper [Kamide 2013a], a new extended linear-time temporal logic (LTL), 

called sequential paraconsistent LTL (SPLTL), was introduced as a Kripke semantics 

                                                  
1 Associate Professor, Faculty of IT and Business, Cyber University 



e ラーニング研究 第 3号（2014） 

24 

with a paraconsistent negation connective and some sequence modal operators. The 

logic SPLTL can appropriately represent both, inconsistency-tolerant reasoning by the 

paraconsistent negation connective, and hierarchical information by the sequence 

modal operators. Some illustrative examples for verifying Students' learning processes 

can be obtained using SPLTL. Some theorems for embedding SPLTL into a 

paraconsistent version PLTL of LTL and into LTL were proved. By using these 

embedding theorems, SPLTL was shown to be decidable.   

Theorem (Embeddability): 

SPLTL is embeddable into LTL, namely, the following holds: Let f  be a mapping from 

SPLTL into LTL. Then, for any formula α, α is valid in SPLTL iff f (α) is valid in 

LTL. 

Theorem (Decidability): 

The validity and satisfiability problems for SPLTL are decidable.  

From the point of view of logic, SPLTL is a combination of LTL and Nelson's 

paraconsistent four-valued logic with strong negation, N4 [Nelson 1949]. LTL is known 

to be one of the most useful temporal logics for verifying and specifying concurrent 

systems. On the other hand, N4 is known to be one of the most important base logics 

for inconsistency-tolerant reasoning. Combining the logics LTL and N4 was studied in 

[Kamide and Wansing 2012], and such a combined logic was called paraconsistent LTL 

(PLTL). Roughly speaking, SPLTL is obtained from PLTL by adding some sequence 

modal operators.    

Combining LTL with some sequence modal operators was studied in [Kaneiwa 

and Kamide 2010], and such a combined logic was called sequence-indexed LTL (SLTL).  

SPLTL is regarded as a modified paraconsistent extension of SLTL, and hence SPLTL 

is a modified extension of both PLTL and SLTL. In the following, we explain an 

important property of paraconsistent negation and a plausible interpretation of 

sequence modal operators.  

One reason why the paraconsistent negation connective ~  in SPLTL is 

considered is that it may be added in such a way that the extended logics satisfy the 

property of paraconsistency. A semantic consequence relation ⊨  is called 

paraconsistent with respect to a negation connective ~ if there are formulas α, β 

such that {α, ~α} ⊭ 	β. In the case of LTL, this means that there is a model M and a 

position i of a sequence σ = t0, t1, t2, ...  of time-points in M with  (M, i)	⊭ ሺα ∧ ~αሻ →

β.  

It is known that logical systems with paraconsistency can deal with 

inconsistency-tolerant and uncertainty reasoning more appropriately than systems 

which are non-paraconsistent. For example, we do not desire that (s(x)∧ ~s(x))	→ d(x) 



第 3章 Logics for verifying students’ learning processes: A survey 

25 

is satisfied for any symptom s and disease d where ~s(x) means ``person x does not 

have symptom s'' and d(x) means ``person x suffers from disease d'', because there may 

be situations that support the truth of both s(a) and ~s(a) for some individual a but do 

not support the truth of d(a). For more information on paraconsistency, see e.g., 

[Kamide and Wansing 2012][Kamide 2013c].  

A sequence modal operator [b] in SPLTL represents a sequence b of symbols. The 

notion of sequences is useful to represent the notions of ``information,'' ``trees,'' 

``orders'' and ``ontologies.'' Thus, ``hierarchical information'' can be represented by 

sequences. This is plausible because a sequence structure gives a monoid (M, ;, ∅ሻ 

with informational interpretation [Wansing 1993]: 

1. M is a set of pieces of (ordered or prioritized) information (i.e., a set of sequences), 

2. ; is a binary operator (on M) that combines two pieces of information (i.e., a 

concatenation operator on sequences), 

3. ∅ is the empty piece of information (i.e., the empty sequence).   

A formula of the form [b1 ; b2 ; … ; bn]	α in SPLTL intuitively means that ``α is 

true based on a sequence b1 ; b2 ; … ; bn of (ordered or prioritized) information pieces.'' 

Further, a formula of the form [∅]α in SPLTL, which coincides with α, intuitively 

means that ``α is true without any information (i.e., it is an eternal truth in the sense 

of classical logic).''  

 

3. The proposed logic in [Kamide 2013b] 
In the paper [Kamide 2013b], a new extended computation tree logic (CTL), 

called sequential paraconsistent computation tree logic (SPCTL), was introduced as a 

Kripke semantics with a paraconsistent negation connective and some sequence modal 

operators. Some new illustrative examples for students’ learning processes were 

presented using SPCTL. The validity, satisfiability and model checking problems of 

SPCTL were shown to be EXPTIME-complete, deterministic EXPTIME-complete and 

deterministic PTIME-complete, respectively. These complexity results were proved 

using some theorems for embedding SPCTL into a paraconsistent CTL (PCTL) and into 

CTL.  

Theorem (Embeddability):  

SPCTL is embeddable into CTL, namely, the following holds: Let g be a mapping from 

SPCTL into CTL. Then, for any formula α, α is valid in SPCTL iff g (α) is valid in 

CTL. 

Theorem (Complexity): 

The validity, satisfiability and model-checking problems for SPCTL are 



e ラーニング研究 第 3号（2014） 

26 

EXPTIME-complete, deterministic EXPTIME-complete and deterministic 

PTIME-complete, respectively. 

These embeddability and complexity results for SPCTL allow us to use the 

existing CTL-based algorithms to test the satisfiability. Thus, it was shown in the 

paper [Kamide 2013b] that SPCTL can be used as an executable logic to model and 

verify inconsistency-tolerant temporal reasoning with hierarchical information.  

Compared with the logic SPLTL in [Kamide 2013a], the logic SPCTL in [Kamide 

2013b] has an efficient model checking algorithm and is executable by using such an 

algorithm. The main difference between SPCTL and SPLTL is the base logic: SPCTL is 

based on CTL, and SPLTL is based on LTL. As well-known, CTL has an efficient model 

checking algorithm in deterministic PTIME-complete, but a simple specification 

cannot be given by CTL. On the other hand, LTL can give some simple specifications, 

but has no efficient model checking algorithm. SPCTL and SPLTL inherited these 

properties for specification and model-checking for CTL and LTL.  

In the rest of this report, we give some illustrative examples based on SPCTL. 

As mentioned in Section 1, a model of students should be inconsistency-tolerant since 

student's understanding is uncertain and vague. SPCTL can be used to express the 

negation of uncertain concepts such as understand (or understanding). For instance, if 

we cannot determine whether someone understands, the uncertain concept understand 

can be represented by asserting the inconsistent formula: understand ∧ ~understand. 

This is well formalized because the formula: (understand ∧ ~understand) →٣ is not 

valid in paraconsistent logic. On the other hand, we can decide whether someone is 

learning: The decision is represented by ~learning, where (learning ∧ ~learning) →٣

	is valid in classical logic. It is remarked that the following negative expressions can be 

differently interpreted: understand (does not understand) and ~understand (does 

not deeply understand). The first statement indicates that a person does not 

understand that is inconsistent with his or her understanding. The second statement 

means that we can say that a person does not deeply understand, but he or she may be 

in shallowly understanding. We thus allow the situation: understand ∧ ~understand.  

In ontology representation, a concept hierarchy is constructed by ISA-relations 

between concepts, i.e., a concept is a subconcept of another concept. In this study, the 

author used sequence modal operators to represent ISA-relations between concepts. 

Let c1, c2, … ,cn be concept symbols. Then, we write a sequence of concept names by [c1; 

c2; … ; cn]. Each order (ci, cj)  (1 i < j  n) of concepts in the sequence modal 

operator [c1; c2;… ; cn] can be used to represent the ISA-relation between ci and cj. For 

example, we declare the following order of two concepts as an ISA-relation between 

``human'' and ``student:'' [student ; human]. This sequence expresses that the concept 



第 3章 Logics for verifying students’ learning processes: A survey 

27 

``student'' is a subconcept of the concept ``human.'' The sequence modal operators in 

SPCTL were applied to hierarchical structures where each hierarchical structure is a 

specific model of concepts in a hierarchy. 

 

4. Concluding remarks 
In this report, the papers [Kamide 2013a] and [Kamide 2013b] on logics for 

verifying students’ learning processes in learning support systems such as intelligent 

tutoring and e-learning systems were surveyed. In these papers, the logic SPCTL and 

SPLTL were introduced and studied. It was then explained in this report that SPCTL 

and SPLTL are appropriate for describing a student model in intelligent tutoring 

systems.  

Finally in this report, we give a remark on intelligent tutoring systems 

[Freedman 2000] [Nwana 1990] and a student model assumed in this study. Intelligent 

tutoring systems are computer systems that provide immediate and customized 

instruction or feedback to students. Intelligent tutoring systems consist of the 

following four basic components based on general consensus amongst researchers: (1) 

domain model, (2) student model, (3) tutoring model and (4) user interface model. The 

discussion in this report was paid special attention to the student model. The student 

model focuses to students' cognitive and affective states and their evolution as the 

learning process advances. A student needs step-by-step through their problem solving 

process. Besides, students' knowledge or understanding is uncertain and vague. Thus, 

a model of students should be inconsistency-tolerant, and an appropriate logic such as 

SPCTL and SPLTL is required.  

 

Acknowledgements: This research was partially supported by Cyber University, 

Grant-in-Aid for e-Learning Research. The papers [Kamide 2013a] and [Kamide 

2013b], which were surveyed in this report, were main contributions of this research.  

 

 

References 

[Emerson and Halpern 1986] E.A. Emerson and J.Y. Halpern, “Sometimes” and “not never” 

revisited: On branching versus linear time temporal logic, Journal of the ACM 33 (1), pp. 

151–178, 1986.  

[Emerson and Sistla 1984] E.A. Emerson and P. Sistla, Deciding full branching time logic, 

Information and Control 61, pp. 175–201, 1984. 

[Freedman 2000] R. Freedman, What is an intelligent tutoring system?, Intelligence 11 (3), 

pp. 15-16, 2000.  



e ラーニング研究 第 3号（2014） 

28 

[Kamide 2013a] N. Kamide, An extended LTL for inconsistency-tolerant reasoning with 

hierarchical information: Verifying students' learning processes, International Journal 

of e-Education, e-Business, e-Management and e-Learning 3 (3), pp. 234-238, 2013. 

[Kamide 2013b] N. Kamide, Modeling and verifying inconsistency-tolerant temporal 

reasoning with hierarchical information: Dealing with students' learning processes, 

Proceedings of the 2013 IEEE International Conference on Systems, Man, and 

Cybernetics (IEEE SMC 2013), pp. 1859-1864, 2013. 

[Kamide 2013c] N. Kamide, Formalizing inconsistency-tolerant relevant human reasoning: 

A decidable paraconsistent relevant logic with constructible falsity, Proceedings of the 

2013 IEEE International Conference on Systems, Man, and Cybernetics (IEEE SMC 

2013), pp. 1865-1870, 2013. 

[Kamide and Wansing 2012] N. Kamide and H. Wansing, Proof theory of Nelson's 

paraconsistent logic: A uniform perspective, Theoretical Computer Science 415, pp. 1-38, 

2012. 

[Kaneiwa and Kamide 2010] K. Kaneiwa and N. Kamide, Sequence-indexed linear-time 

temporal logic: Proof system and application, Applied Artificial Intelligence 24 (10), pp. 

896-913, 2010. 

[Nelson 1949] D. Nelson, Constructible falsity, Journal of Symbolic Logic 14, pp. 16-26, 

1949.  

[Nwana 1990] H.S. Nwana, Intelligent tutoring systems: An overview, Artificial 

Intelligence Review 4, pp. 251-277, 1990. 

[Pnueli 1977] A. Pnueli, The temporal logic of programs, Proceedings of the 18th IEEE 

Symposium on Foundations of Computer Science, pp. 46-57, 1977.  

[Wansing 1993] H. Wansing, The logic of information structures, Lecture Notes in Artificial 

Intelligence 681, pp. 1-163, 1993. 


